System Independent
Data Format

April 27, 1993
Rev 1.3

Novell® Inc.
122 East 1700 South
Provo, Utah 84606

©Copyright February 1992 Novell, Inc. All Rights
Reserved

Trademarks

Novell is a registered trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc.

Table Of Contents

Sections

Listof Figures iv
Introduction 1-1
Listof Figures 1-1
Term Definition 1-3
Task and Information Map 1-4
System Independent Data Format 1-5
Compatibility 1-5
Security 1-5
Logical Format 1-6
Medialevel 1-7

Data Set Databases 1-10

Transfer Buffer Level 1-11

Media Overflow 1-12

Data Set Level 1-13

File Service Example 1-15

Data Representation 1-17
Sections 1-17
Fields 1-17
The Field IDentifier (FID) 1-18
Standard FIDs 1-19
Developer FIDs 1-23

Extended Developer FIDs 1-26
NULLFID 1-27

DataSize 1-28

Size Format1 1-28

Size Format 2 1-28

Size Format3 1-29

Size Summary 1-29
ByteOrder 1-29

Field Example 1-29
Designing the Field 1-30

Parsing the Field 1-30

Error Recovery 1-30
Hard and Soft Aborts 1-30
Resynchronization 1-31
Direct Seeking 1-31
...................................... 2-1
Section Presentation 2-2
Medialevel 2-4
Blank Space 2-4
Soft MediaMark 2-5
Media header 2-7
SessionHeader 2-9
Session Trailer 2-11
SessionIndex 2-12
Medialndex 2-16
Media trailer 2-18

Rev 1.3

System Independent Data Format

Transfer Buffer Level 2-19
Transfer Buffer Header 2-19
Data Record Header 2-22
Data Set Information(1.3) 2-23
Data Set Information(1.4A) 2-26
Data Subrecord Header 2-29

DataSet Level 2-30
DataSetData 2-31

Volume Header 2-31
Directory Header 2-32
Transaction Set Header 2-33
FileHeader 2-35
Transaction Set File Header 2-37
Bindery Header 2-38

Full Paths 2-39
Transaction Set Full Path 2-41

Data Set Characteristics 2-43
Macintosh Characteristics 2-45

NFES Characteristics 2-46

Data Stream Header 2-49

Data Stream Trailer 2-51
Extended Attributes 2-52
Trustees 2-53
Bindery Trailer 2-54
Transaction Set File Trailer 2-55

File Trailer 2-56
Volume Restriction 2-57
Directory Trailer 2-59
Volume Trailer 2-60

Other Documents A-1
SMS Documents A-2
Miscellaneous Novell Document A-2
SIDF Example, B-1

Directory Header Section B-3

Full Paths Section B-3

Characteristics Section B-4

Directory Trailer Section B-5

File Header Section B-6

Full Paths Section B-6

Characteristics Section B-7

Data Stream Header Section B-9

Data Stream Trailer Section B-10

File Trailer Section B-10

FID Listings C-1

FIDRanges iiiinnnnnn. C-2

FID Bits o e C-4

Alphabetical FID Define Listing C-5

ii Rev 1.3

FID Define Listing by Sections C-8

General FIDs C-8
Miscellaneous FIDs C-8
Media header/ Trailer C-8
Session Header/Trailer C-9
Transfer Buffer Header C-9
Session/Media Index C-9
Data Record/Subrecord Header C-9
Data Set Information C-10
Headers and Trailers C-10
Full Paths C-10
Data Set Characteristics C-10
MAC Name Space Specific Characteristics C-11
NFS Name Space Specific Characteristics C-11
Extended Attributes C-11
Trustees @ C-11
Volume Restrictions C-12
Data Streams C-12
Transaction Sets C-12
Soft Media Mark C-12
Parser and Builder Example D-1
Compiler D-2
Macros and Type Defines D-2
Example Field Parser Function D-3
Example Field Builder Function D-6
Support Functions D-9
Notes For SMS Developers E-1
SMS OVerviewt e i E-2
TSA, SME, and SDI's Roles E-3
TSA .. E-3
SME . . . e E-3
SDI .. E-4
FormattingData E-4
Section Responsibility E-5
Blank Space E-5
Soft Media Mark E-5
MediaHeader E-5
Session Header E-5
Session Trailer E-6
SessionIndex E-6
MedialIndex E-6
Media Trailer E-6
Transfer Buffer Header E-6
Data Record Header E-7
Data Subrecord Header E-8
Data Set Information E-8
Transaction Set Header E-8
FullPaths E-8
Rev 1.3 111

System Independent Data Format

List of Figures

Revision History F-1

Document Revision F-2
Glossary e GL-1
Index Index-1
Figure 1-1. Session Physical Sector Address Example . .. 1-3
Figure 1-2. SIDF 1-6
Figure 1-3. SIDF Layout 1-7
Figure 1-4. Medialevel 1-9
Figure 1-5. Transfer Buffers Level 1-12
Figure 1-6. Data Set Level 1-13
Figure 1-7. Transaction Sets 1-14
Figure 1-8. File ServiceEd 1-15
Figure 1-9. SIDFRepresentationof Ed 1-15
Figure 1-10. Fields 1-18
Figure 1-11. Small Standard FIDs 1-20
Figure 1-12. Short Standard FIDs 1-21
Figure 1-13. Long Standard FID 1-22
Figure 1-14. Short Developer FIDs 1-23
Figure 1-15. Long Developer FIDs 1-25
Figure 1-16. Short Extended Developer FIDs 1-26
Figure 1-17. Long Extended Developer FIDs 1-27
Figure 2-1. Section Description 2-2

Rev 1.3

Introduction

List of Figures

List of Figures 1-1
Term Definition 1-3
Task and Information Map 1-4
System Independent Data Format 1-5

Compatibility 1-5
Security 1-5
Logical Format 1-6
Medialevel 1-7

Data Set Databases 1-10

Transfer Buffer Level 1-11

Media Overflow 1-12

Data Set Level 1-13

File Service Example 1-15

Data Representation 1-17
Sections 1-17
Fields 1-17
The Field IDentifier (FID) 1-18
Standard FIDs 1-19
Developer FIDs 1-23

Extended Developer FIDs 1-26
NULLFID 1-27
DataSize 1-28

Size Format 1 1-28

Size Format 2 1-28

Size Format3 1-29

Size Summary 1-29

Byte Order 1-29

Field Example 1-29
Designing the Field 1-30

Parsing the Field 1-30

Error Recovery 1-30
Hard and Soft Aborts 1-30
Resynchronization 1-31
Direct Seeking 1-31

Figure 1-1. Session Physical Sector Address Example . .. 1-3

Figure 1-2. SIDF i 1-6
Figure 1-3. SIDF Layout 1-7
Figure 1-4. Medialevel 1-9
Figure 1-5. Transfer Buffers Level 1-12
Figure 1-6. Data Set Level 1-13
Figure 1-7. Transaction Sets 1-14
Figure 1-8. File Service Ed 1-15
Rev 1.3 1-1

System Independent Data Format

Figure 1-9. SIDFRepresentationof Ed 1-15
Figure 1-10. Fields 1-18
Figure 1-11. Small Standard FIDs 1-20
Figure 1-12. Short Standard FIDs 1-21
Figure 1-13. Long Standard FID 1-22
Figure 1-14. Short Developer FIDs 1-23
Figure 1-15. Long Developer FIDs 1-25
Figure 1-16. Short Extended Developer FIDs 1-26
Figure 1-17. Long Extended Developer FIDs 1-27
1-2 Rev 1.3

Introduction

Term Definition

Important terms for using and understanding the System
Independent Data Format (SIDF) are defined below:

Transfer buffer -- A buffer or a logical collection of
sectors transferred in a high level I/O request (e.g.,
32K, 64K, 128K, 256K, etc.). The buffer size must be a
multiple of the medium’s physical sector size.

Session -- A group of associated data sets.

Logical sector -- The smallest unit of data that can be
transferred between the media process and the process
transferring the data. This size is 512 bytes.

Physical sector -- The smallest number of bytes that
can be transferred to/from the media (e.g., 512 bytes,
1K, 4K, etc.). Unless specifically stated otherwise, the
term sector refers to a physical sector.

Session Physical Sector Address -- The number of
physical sectors from the session header (i.e., relative
addresses). For example, Figure 1-1 shows physical
sectors 22 through 2B. The figure shows two
interleaved sessions and the addresses of their
respective transfer buffers in parenthesis.

Physical Sector
Addresses

22 |— Session Header 1
23
57 Transfer Buffer (1)
55 Notes:
Transfer Buffer (3)) Transfer buffer sector address
s relative to its session header.
2/ |—— Session Header 2
g Session 1 All Session 1transfer buffersare
5q Transfer Buffer (B) black
2A Session 2 All Session 2 transfer buffersare
5 Transfer Buffer (3) underlined.

Figure 1-1. Session Physical Sector Address Example

In this example, each transfer buffer occupies two sectors.
Session 1 starts at sector 22 and has three transfer buffers at
session physical sector addresses 1, 3, and 6. Session 2 starts
at sector 27 and it has one transfer buffer whose address is 3.
In essence, the transfer buffer’s session physical sector
address is the number of sectors from its session header.

Rev 1.3

1-3

System Independent Data Format

¢ Absolute Physical Sector Address -- The physical sector
address of the media. In Figure 1-1 these are
addresses 27 through 2B.

Note: Physical sector zero is the first addressable sector
within the SIDF space.

¢ Logical Sector Zero -- The first physical sector that can
be addressed within the SIDF defined area.

e Data Set -- The data set data and data set information.

e Data Set Data -- A set of related data, attributes, and
characteristics. For example, the data set data for a
DOS file is the file data, file name, path, last modified
date and time, and attributes (e.g., read only or
system).

* Data Set Information -- A set of descriptive information
used for display purposes only (e.g., data set name, or
creation date). This is a separate set of information
from the data set data and may contain duplicate
information.

Task and Information Map

The following provides a map for readers to digest the
material contained in this document efficiently. The following
presents a list of tasks or information:

¢ Theory of SIDF - Read "System Independent Data
Format" (page 1-5).

¢ Fast tour of SIDF - See Figure 1-2 (page 1-6),
Figure 1-4 (page 1-9), Figure 1-5 (page 1-12), and
Figure 1-6 (page 1-13).

* Developing your own FIDs - Read "Data
Representation” (page 1-17).

* SMS Developers see Appendix E, "Notes for SMS
Developers."

1-4 Rev 1.3

Introduction

System Independent Data Format

Compatibility

Security

System Independent Data Format (SIDF) is a specification
that

* Provides a logical layout for media, session(s), data,
indexes, and databases.

¢ (Can provide a common data format across all
platforms, thus allowing one engine to transfer data
between multiple platforms. A platform is any object
that has data that needs to be formatted (e.g., an OS or
a service [e.g., printing]).

¢ Allows an engine to use many media types (e.g., tape,
Magneto Optical, Write Once Read Many [WORM],
random access media) without requiring media-specific
knowledge. SIDF is not limited to currently defined
media types.

* Ensures that the future and current engines and data
are backwards and forwards compatible.

¢ Is extensible. New platform-specific and developer-
specific data can be added while maintaining SIDF
compliance.

SIDF helps to ensure compatibility among all future and
current SIDF-compatible engine and stored-SIDF data
because it provides a common logical data format for
platforms (e.g., DOS and Macintosh) and media.

For instance, data sets from one platform can be restored to
another platform. If the destination platform does not support
parts of a data set, the parts may need to be discarded. For
example, when restoring a session containing Macintosh data
sets to a DOS target, the engine discards the resource forks
but keeps the DOS equivalent (the data fork).

Another example is restoring an older data set to a newer file
system that supports enhanced data sets (e.g., a new attribute
was added). The restoring process creates the missing
information for the old data set.

SIDF does not enforce security, but provides the mechanism
to allow engines to implement it. The mechanisms are

Rev 1.3

1-5

System Independent Data Format

authentication and data set encryption at various levels of
SIDF. These are discussed later in this document (see
"security” in the index).

Logical Format
SIDF starts from logical sector zero through the end of SIDF
recorded data and defines a logical view of the medium,
session, and data. It contains three levels, where the higher
level encapsulates the lower level. The levels are, starting
from the top, the media level, the transfer buffer level, and
the data set level (see Figure 1-2). The media level contains
one or more sessions. Within this level is the transfer buffer
level, which divides the session data into logical segments
called transfer buffers. The transfer buffers contain record(s)
and subrecord(s), which in turn contain the session’s data
sets. The data set level contains the data set data (e.g., path
and data).

Transfer Buffer Level
Media Level Transfer Buffer 1
Transfer Buffer Header

Media Header

Record 1
Session Data Set Level
H a2
S0t Data Set Data
Session 2
Transfer Buffer 2
Session x

Transfer Buffer x

Media Trailer

Figure 1-2. SIDF

Figure 1-3 shows a high level example of SIDF’s components
on the media.

1-6 Rev 1.3

Introduction

Logical
Sector Zero

Transfer Buffer

Transfer Buffer

1

2

Media 1

Media 2

Media Header

Media Header

Session Header

Transfer Buffer n-1

Transfer Buffer Header
Record Header
Record Data
RHecord Header
Record Data
Subrecord Header
Record Data
Subrecord Header
Record Data

Transfer Buffer Header
Subrecord Header
Record Data
Record Header
Record Data
Record Header
Record Data
Record Header
Record Data

Transfer Buffer 3

Transfer BUFTEr ™ 14 nofer Buffer n-1

Qverflows Media

Logical sector x
(End of SIDF
Recorded Data)

—

Media Trailer
End of Media

7N\

Transfer Buffer n

File Mark

Session Trailer

Transfer Buffer Header
Session Index Data

Transfer Buffer Header
Media Index Data

File Mark
End of Media

Y

Figure 1-3. SIDF Layout

Repeated

= Transfer Buffer

Transfer Buffer 1

Transfer Buffer 1

Figure 1-3 shows a session having n transfer buffers and that
media 2 entirely repeats transfer buffer n-1 because it cannot
fit on media 1. The other blocks are discussed later in this

document.

Media level

The media level defines the start and end of SIDF data, the
media set, and the session(s). The start of SIDF data begins
at logical sector 0, which contains a media header. Logical
sector 0 is the first sector that begins the SIDF data. If sector
27 contained the media header, that sector is logical sector 0.

The media set is a set of related media. Each medium within
a media set can be identified through one of two methods:

Rev 1.3

1-7

System Independent Data Format

1. Each medium in the media set has the same label and
a unique sequence number.

2. Every medium may have an alternate media label.
Each medium within the media set can be different. That is,
the device used, physical sector size, etc. does not have to be

the same.

A session is a set of related data sets. The user defines the
relationship (e.g., the user backs up one directory).

1-8 Rev 1.3

Introduction

Figure 1-4 shows the media level. Notice that all media must

begin with a media header. Following this are one or more
sessions. Each session contains, in order, a session header,
session data, a file mark, session trailer, and session index.
The media index follows the session trailer, and is optional,
however, there must be at least one in a media set. Set

marks begin every session, except the first one in a media set.

Note: Set marks and file marks can be emulated on

devices that do not support them. Also, the file mark and
media trailer are recommended if a session overflows the
medium.

Session

Session

Media Header

Session Header 1

Session Data
FILE MARK ———

Session Trailer

Session Index

Media Index

SET MARK

oession Header 2

oession Data
FILE MARK ———

Session Traller

Session Index

Media Index
FILE MARK

Media Trailer

Figure 1-4. Media level

The session index is a log of serviced data sets and their

location on the media, and provides redundancy. The media

index is a log that records the location of every session that

precedes the media index.

Rev 1.3

System Independent Data Format

Data Set Databases. Besides the session and media indexes,
databases also can track the serviced data sets. The database
may keep track of all backup instances of a data set. This
allows a user to instantaneously see variations of a data set
through time without having to search through many media
or log files.

SIDF allows the database to be kept on the medium in one of
several places. Searching for the database can consume a
relatively large portion of time, therefore the placement of
databases is an important issue. The following paragraphs
describe SIDF’s options for placing and finding a database.

Database Location Information -- Finding a database on
the media with many databases can take a considerable
amount of time. Consequently, SIDF provides 5 methods to
place them. The device determines the method selected.
Information about the method used (and sometimes the
parameters used) should be recorded in the media header.
The following paragraphs describe the supported database
placement methods.

Method 1: Databases can occur only after a session trailer or
media index. The database must occur after the session
trailer and before the media index (if present).

Method 2: Two partitions - Partition one (fixed in size)
contains the addresses of the databases. Partition zero
contains intermixed session data and databases.

Method 3: Two logical partitions converging from opposite
ends of the same physical partition - The partition growing
from the end of the media contains the database addresses.
The partition growing from the beginning contains intermixed
session data and databases.

Method 4: Two logical partitions converging from opposite
ends of the same physical partition - The partition growing
from the end contains the databases. This method is not
preferred, because locating the databases requires more time,
and it must be written in reverse.

Method 5: One partition with databases allowed only at
specified offsets - Align databases on an offset or multiples of
an offset. To find a database, look at each offset to learn if it
is there.

1-10

Rev 1.3

Introduction

When selecting an offset value, it is necessary to consider:

¢ The number of databases that will be written on the
medium.

¢ The amount of time required to find them.

¢ The amount of space wasted caused by skipping from
the end of the session data to the next offset location
because the session data are not aligned to the offsets.
That is, to write the database information, the media
engine must jump to the next offset location.

Transfer Buffer Level

The transfer buffer level divides the session data into one or
more groups called transfer buffers. These transfer buffers
contain a transfer buffer header and one or more record
and\or subrecords.

The records and subrecords contain the session’s data sets.
Each record contains a record header and one data set, which
consists of the data set information and the data set data.
The subrecord contains a subrecord header and the rest of the
data that could not fit into the record (repeat the subrecord as
often as necessary).

The data set information contains descriptive data that is
used to display the serviced data set (this information is not
needed to restore the data set). The data set data contains
the actual data set. "Data Set Level" in this chapter further
defines the data set data. Figure 1-5 shows the data set level.

Rev 1.3

System Independent Data Format

Session 2

Transfer Buffer 1%

Beginning of Sector m

Transfer Buffer Header

RH 1

Data Set Information

Data Set Data

HH 2

Record Data*x*

Padding

Transfer Buffer 2x

Record 1

nsectors

Record 2

Beginning of Sector m +n

Transfer Buffer Header

SH 1

Continued data from
record ¢

RH 3

Data Set Information

Data Set Data

Transfer Buffer x*

Subrecord 1
(Record 2

Continued) 0 Sectors

Record 3

Beginning of Sector g

Transfer Buffer Header

RHy

Data Set Information

Data Set Data

r sectors
Record y

*Transfer buffers are aligned on physical sector
bounderies and must fully occupy the sectors they
use (e.g., a transfer buffer cannot occupy part of a

sector).

A% May contain partial Data Set Information or
Data Set Data. Theremaining data (overflow)is

in subrecord 1.

Figure 1-5. Transfer Buffers Level

Media Overflow.

If a transfer buffer overflows the media,

the engine should do the following:

1. Write a file mark if possible.

2. Write a media trailer if possible.

1-12

Rev 1.3

Introduction

Record Y

3. Write a media header onto the next medium.

4. Rewrite the complete transfer buffer.

Data Set Level

The data set level defines the format of the data set data.
SIDF divides the data set data into logical sections such as
the data streams, extended attributes, trustees, etc.

Figure 1-6 and Figure 1-7 show the data set level (other data

Hecord Header

Data Set Information

Data sSet Data

sets can be added here).

Bindery Data Set

Volume Data Set

Bindery Header

Volume Header

Data Stream or Dath
(Net§00].5Y5) Mac Characteristics*
Data Stream
(Net$Prop.oY o) L
Data Stream ¢
(Net$val 5YS) ®
Bindery Trailer NFS Characteristics*
Attributes
Trustees
Volume Restrictions
Volume Trailer
Directory Data et File Data Set
Directory Header File Header
Path or Path
Characteristics Characteristics
Mac Characteristicsk Attributes
PY Trustees
: Data Streams
NFS Characteristics* Flle Trefler
Attributes
Trustees
Directory Trailer

Figure 1-6. Data Set Level

Rev 1.3

1-13

System Independent Data Format

Figure 1-7 shows the format of a transaction set (i.e., files for
one database). Notice that the whole database is treated as
one data set.

Transaction Set Full Paths
Path for file 1
Path for file 2

Path for file n

Transaction Set Data Set Hilen

Transaction Set File Header

Transaction Set Header
Record Y Data Set Characteristics

Transaction et Full Paths

Record Header
Data Set Information File 1

Data Set Data File 2

Mac Characteristics*x
NFS Characteristics
Extended Attributes

% Not a section
** Optional

File n

Trustees

Transaction Set Trailer

Data Stream Header

Transaction Set File Datax

Data Stream Trailer

Transaction Set File Trailer

Figure 1-7. Transaction Sets

Figure 1-6 and Figure 1-7 show that the path and
characteristic sections are usually the second and third
sections (except in special cases like the bindery). The other
sections can occur in any order and in any number (e.g., data
streams, name spaces, data streams, data streams, extended
attributes, etc.).

Note: The target’s name space type, not SIDF, defines the
case sensitivity for objects such as a path, data set name,
etc. Therefore, the engine must ensure that the objects
received from the user, objects passed to the target, etc.,
have the proper case.

1-14 Rev 1.3

Introduction

File Service Example
The following shows a high-level view of formatting a file

service to SIDF’s specifications. File service Ed has the
following structure:

File Service
Ed

‘Attachexe‘ ‘ Login.exe ‘

Figure 1-8. File Service Ed

Representing Ed according to SIDF’s specifications could
result in the following as it would appear on the media:

Media Header
Session Header

Transfer Buffer Header
RH

Vol 1Volume Header
AH

System Directory Info
RH

Directory Info
RH
Public Directory Info
RH

Allow exe File Info
RH
Attach.exe File Info
RH
Vol 2 Volume Info
RH
Login Directory Info
RH
Loginexe File Info
Media Trailer

Figure 1-9. SIDF
Representation of
Ed

Each information block in Figure 1-9 represents a group of
sections as shown in Figure 1-6. Figure 1-9 assumes that
each information block fit into one record and all records fit
into one transfer buffer. The name, Ed, is not explicitly

Rev 1.3

1-15

System Independent Data Format

represented because it is contained in the session header. The
full paths section preserves the structure of Ed (see "Full
Paths" in Chapter 2).

1-16 Rev 1.3

Introduction

Data Representation

Sections

Fields

SIDF’s specifications are explained below. For those defining
new data sets, the following information is critical to
designing your sections.

A section is a logical grouping of data. SIDF identifies items
such as the session header, media index, volume header, path,
and characteristics as sections (see Figure 1-2 and Figure 1-6).
The session data item (see Figure 1-2) is not a section, but
consists of many sections as shown in the data set level (see
Figure 1-6).

The section is a table of related fields. The first field in the
table identifies the section and contains parsing
resynchronization data (see "Resynchronization" in this
chapter for more information). The last field marks the end of
the section and usually contains, a CRC* value for all fields

in the section except the last field. The position of the first,
second (offset to end), and last fields are fixed; other fields can
be in any order (except where noted). If the second field is not
needed, its space is used by any field.

For example, the media trailer section contains three fields:
Media Trailer
Close Date and Time
Media Trailer
The first and last field, media trailer shows the start and end
of the section. Close date and time contains the date and time

the media was closed. The following paragraphs discuss the
format of a field.

As described above, a group of related fields makes a section.
A field:

¢ Gives the data a name (a Field IDentifier [FID])
e Shows the data’s size

e (Contains the data

! The CRC polynomialis x2 + x® + x® + x2 + x® + x2 + x" + x? + X® + X’ + ¥ + x' + x> + X' + x°. This
can be found in the ANSI X3.66 (X.25).

Rev 1.3

System Independent Data Format

Figure 1-10 shows a logical view of a field. Some fields
physically have three subfields, while others imply the
subfields. This will become apparent as the discussion
progresses.

FID | Data Sizex | Datak

Section .

XThis subfield exists only in some fields

Figure 1-10. Fields

FIDs are contained in a byte stream, where the previous byte
determines how the next byte is interpreted. Each FID is a
bit pattern that uniquely identifies the field and its data (e.g.,
media trailer, software version, or owner ID).

The data size is a complex descriptor that shows the data’s
size in bytes or bits. In some FIDs the data’s size is part of
the FID. Consequently, there is no separate "data size"
subfield as shown in Figure 1-10.

The data subfield exists as a separate entity for most FIDs; in
some cases however, the FID contains the data. The data’s
byte order is little endian (low-high byte order). The following
paragraphs further describe the subfields.

The Field IDentifier (FID)

The basic FID has three or four parts, depending upon how it
is used. These parts are the

FID size bit (it shows if a FID is small, short, or long)
Variable or fixed data size indicator

FID number

Size of data

Note: FIDs are contained in a byte stream, where the
first byte determines how the next byte is interpreted.

The FID size bit is size of the FID, not the data’s size. The
small FID is the basic FID and consists of only one byte. The
short FID adds one byte to the small FID and the long FID

1-18

Rev 1.3

Introduction

adds another byte. These other bytes serve to increase the
number of available FIDs. More bytes can be added can be
added to further increase the number of FIDs.

The "variable or fixed data size indicator" shows if the data’s
size varies over time or is fixed over time. Depending upon
the FID, this information is contained in one or more bits.
When set to a proper value, it suggests a variable data size
and one or more data size bytes follow the FID (these bytes
contain the data’s size). "Data Size," in this chapter, further
discusses the data size bytes.

If the "variable or fixed data size indicator" is set to another
value, four bits in the FID contains the data’s size in powers
of two. Fixed data sizes from 1 byte to 32 kb is representable.

The FID number is a unique number given to a type of data.

For example, one number could represent the general idea of
a path as used in DOS, Macintosh, and UNIX.

The size of data subfield, exists as a separate component for
variable FIDs and is part of the FID for fixed FIDs. This idea
is important to note, because it helps to decide what is the
field identifier. For variable FIDs, only the FID and not the
data size bytes are used to identify the data. For fixed FIDs
however, the whole FID, including the four data size bits,?
identifies the data.

As mentioned in the above paragraphs, additional bytes can
be added to the basic FID to increase the number of FIDs.
The following bytes have been added:

¢ The standard byte
The developer byte
¢ The extended developer byte

The following paragraphs discuss these FIDs.

Note: special case FID.
Standard FIDs. The standard FID defines data common to
most targets and contains the

* Small Standard FIDs (the basic FID)

¢ Short Standard FID
* Long Standard FID

2 The last four bits contains the data’s size in powers of two.

Rev 1.3 1-19

System Independent Data Format

Small FIDs are 1 byte, and are identified by the seventh bit,
which is set to zero. The FID is variable if bits 4 through 6
are less than or equal to 3. If the bits are greater than or
equal to 4, the FID is fixed. If the FID is variable, the lower
six bits contain the FID number (the value of these bits must
be greater than or equal to 1). If the FID is fixed then bits
four and five contain the FID number, while bits 0 through 3
contains the data’s size in powers of two. Figure 1-11 shows
the bit pattern for the small standard FIDs.

Small Standard

Varable FID OJo[x PP 1~ 4 sl fixed FIDs
n = Size of data inpowers
of two

m‘m“n‘m‘m‘n‘ x =FID number (1-63)

omall Standard ‘U
Fixed FID

Pl

Variable/Fixed Bit

Figure 1-11. Small
Standard FIDs

The table below shows the range of small standard FIDs.

Note: m and n are explained in Figure 1-11.

Small Standard FID Range
FID Type Valid FID Values
Variable Size 0x01 - 0x3F?
Fixed Size* Oxmn - Oxmn’®
m=4to7
n=0to F

3 64 standard, variable size, small FIDs.

4

5

Fixed size means that the data’s size is encoded within the FID.

4 standard, fixed-size, small FIDs per developer number. Each FID can have one of the following sizes: 1, 2, 4,

8, 16, 32, 64, 128, 256, 512, 1K, 2K, 4K, 8K, 16K, and 32K Bytes.

1-20

Rev 1.3

Introduction

Figure 1-12 shows that the short standard FID adds a byte,

0x80, in front of the small FID. The FID is variable if bits 4
through 6, of the low byte, are less than or equal to 3. If the
bits are greater than or equal to 4, the FID is fixed.

short/lLong Bit

First Byte

Last Byte

Short Developer q‘Q‘D‘D‘D‘D‘U‘D 0

Variable FID

N

<P

Short Developer W‘U‘D‘D‘U‘U‘D‘D 0

Fixed FID

N

UNNNE

=4 fixed FIDs

m
n = 8ize of data inpowers of two
X

= FID number (0-63)

Variable/Fixed Bit

Figure 1-12. Short Standard FIDs

The following table shows the range of the short standard

FIDs.

Note: See Figure 1-12 for a description of m and n.

Short Standard FID Ranges

Type

Range

Variable Size

0x8000 - 0x803F*

Fixed Size

0x80mn - 0x80mn’
m = 0x4 to 0x7
n = 0x0 to OxF

5 64 standard, variable-size, short FIDs.

T4 standard, fixed-size, short FIDs. Each FID can have one of the following sizes: 1, 2, 4, 8, 16, 32, 64,
128, 256, 512, 1K, 2K, 4K, 8K, 16K, and 32K bytes.

Rev 1.3

1-21

System Independent Data Format

Like the short standard FID, the long standard FID has the
0x80 byte, but it also has an additional byte at the end. If the
high nibble of the middle byte is greater than or equal to 0x8
and less than or equal to OxE, then it is a long standard
variable FID. If it is OxF, then it is a long standard fixed FID
(see Figure 1-13).

Standard Byte Short/Long Bit

. T First Byte <=bH Last Byte
Varabie FD LO[O[OO O O[O XX PP X DX X X XX

N

Fxearin o [1o[O[O]o[oo]e

N

KN DR R R

Variable/Fixed Bits

m = FID number (0-255)
n = 9ize of Data inpowers of two
X = FID number (0-28,671)

Figure 1-13. Long Standard FID

The following table shows the range of the long standard
FIDs.

Note: See Figure 1-13 for a description of m and n.

Long Standard FIDs
Type Range
Variable Size 0x808000 - 0xS8OEFFF®
Fixed Size 0x80Fnmm - 0x80Fnmm®
mm = 0x00 to OxFF
n = 0x0 to OxF

8 28K standard, variable-size, long FIDs.

% 956 standard, fixed-size, long FIDs. Each FID can one of the 16 following sizes: 1, 2, 4, 8, 16, 32, 64,

128, 256, 512, 1K, 2K, 4K, 8K, 16K, and 32K bytes.

1-22 Rev 1.3

Introduction

short Developer
Variable FID

short Developer
Variable FID

Developer FIDs. The developer FIDs allow for developer
specific information and will be assigned to the first 62
developers. The developer FID adds another byte to the front
of the small standard FID.

The developer FID is identified by the seventh and sixth bits
of the first byte, which is always set to 10. The lower six bits
contain the developer number.

Short FIDs set the seventh bit of the low byte to 0. The FID
is variable if bits 4 through 6, of the lower byte, are less than
or equal to 3. If the bits are greater than or equal to 4, the
FID is fixed. For fixed FIDs, bits four and five show the ID
number, and bits 0 - 3 tell the data size in powers of two.
Figure 1-14 shows the bit pattern.

Developer Byte Short/lLong BIt

First Byte

EREEEEE E

(am)

<P
m =4 FIDs per developer number

= Size of data inpowers of two
= Developer number (the value of

these bits must be >=1[1-63])
= FID number (0-63[064 per

O 5

<

IEERREEE

-~

m‘m‘m‘m‘n‘n‘ developer numberJ)

Variable/Fixed Bit

Figure 1-14. Short Developer FIDs

The following table shows the FID’s range.

Note: See Figure 1-14 for a description of m, n, and p.

Short Developer FID Ranges

Type Range
Variable Size 0xpp00 - Oxpp3F™°
Fixed Size Oxppmn - Oxppmn*
m = 0x4 to 0x7
n = 0x0 to OxF
pp = 0x81 to 0xBF

10" 64 variable-size short FIDs per developer number (62 developer numbers).

11

4 fixed-size FIDs per developer number (62 developer numbers). Each FID can represent one of the

following 16 sizes: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1K, 2K, 4K, 8K, 16K, and 32K bytes.

Rev 1.3

1-23

System Independent Data Format

1-24 Rev 1.3

Introduction

The long developer FID adds a byte to the end of the short
developer FID, which increases the number of FIDs per
developer number from 64 to 28k. Like the short developer
FID, the long developer FID also sets the seventh and sixth
bit of the first byte to 10.

Since this is a long FID, the seventh bit of the second byte is
set to 1. Bits 4 - 6 suggest a variable or fixed FID. If the
value is less than or equal to 6, we have a variable FID. If
the value is 7, we have a fixed FID (see Figure 1-15).

Short/Long Bit

Developer Byte

First Byte Last Byte
Long Developer WWWWWXH E3E3 ES RS ER B 3R
Variable Fid
=7
Long Developer MID\D\D\D\D\D\D\IWW\W [[
Fixed Fid e

Variable/Fixed Bits

m = Fid numbers (0-255)

n = Size of Data inpowers of two

p = Developer number (the value of
these bits must be >=1[1-63])

X =FID number (0-28,671)

Figure 1-15. Long Developer FIDs
The following table shows the range of the long FIDs.

Note: See Figure 1-15 for a description of m, n, and p.

Long Developer FID Ranges

Type Range
Variable Size 0xpp8000 - OxppEFFF?
Fixed Size OxppFnmm - OxppFnmm?'
mm = 0x00 to OxFF
n = 0x0 to OxF
pp = 0x81 to 0xBF

12 98K variable-long FIDs per developer number (62 developer numbers).

13 956 fixed-size long FIDs per developer number (62 developer number). Each FID can have one of the

following sizes: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1K, 2K, 4K, 8K, 16K, and 32K bytes.

Rev 1.3 1-25

System Independent Data Format

Extended Developer FIDs. After the 62 developer FIDs are
assigned, the following FIDs will be assigned to other
developers. This group of FIDs, like the developer FIDs, only
contain the short and long FIDs. The extended developer FID
adds two bytes to the front of the small standard FID. The
two highest bits of the high byte are set to 11 (see

Figure 1-16).

Extended Developer Bytes Short/Long Bit

e FrstBte Last Byte
Developer 4‘ﬂ‘p‘p‘p‘p‘p‘plp‘p‘p‘p‘p‘p‘p‘p 0|0 X‘X‘X‘X‘X‘X‘
Variable FID

Short Extended

Beveloper LI 'TP[P[P[P[P[PIPTPIPTPIPTP P[P O] T[] [m["]"]]
Fixed FD Variable/Fixed Bit
m =4 FIDs per developer number

n = Size of data in powers of two

p = Developer number (0-16,383)

x = FID number (0-63 [64 per

developer number])

Figure 1-16. Short Extended Developer FIDs
The following table shows the range for the short FIDs.

Note: See Figure 1-16 for a description of m, n, and p.

Short extended Developer FID Ranges
Type Range
Variable Size 0xpppp00 - Oxpppp3F*
Fixed Size Oxppppmn - Oxppppmn'®
m = 0x4 to 0x7
n = 0x0 to OxF
pppp = 0xCO000 to
0xFFFF

14 62 extended variable-size short FIDs per developer number (16K of developer numbers).

15 4 extended fixed-size short FIDs per developer number (16K of developer numbers). Each FID can
have one of the 16 following sizes: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1K, 2K, 4K, 8K, 16K, and 32K bytes.

1-26 Rev 1.3

Introduction

The long developer FID contains 4 bytes (see Figure 1-17).

Extended Developer Bytes short/Long Bit

First Byte Last Byte
SREEEEE BERNEREE

Long Extended
Developer 1[1]e[e]e]r]r]P]r[P[P]P[P[P[P]P
Variable FID

RN

Long Extended
Developer 1[1]p[p[r[e]p[P]P|P|P|P|P[P|P[P
Fixed FID

N

R

VariablelFixed Bits

m =FID number (0-255)

= Gize of data inpowers of two
= Developer number (0-16383)
=FID number (0-28,6/1)

> T =

Figure 1-17. Long Extended Developer FIDs

The following table shows the range of the long extended
developer FIDs.

Note: See Figure 1-17 for a description of m, n, and p.

Long Extended Developer FID Ranges

Type Range

Variable Size Oxpppp8000 -
0xppppEFFF'¢

Fixed Size OxppppFnmm -
OxppppFnmm?!’
mm = 0x00 to 0xFF
n = 0x0 to OxF
pppp = 0xC000 to
OxFFFF

NULL FID. All space within a session must be occupied by
data or zeroed bytes. The blank space section allows you to
pad the sectors with zeros. In cases where this section does
not fit, you must fill the rest of the sector with zeros. In

16 98K extended variable-size long FIDs per developer number (16K of developer numbers).

1" 956 extended fixed-size FIDs per developer number (16K of developer numbers). Each FID can have
one of the following sizes: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1K, 2K, 4K, 8K, 16K, and 32K bytes.

Rev 1.3 1-27

System Independent Data Format

either case, padding produces a field that begins with a zeroed
byte or a NULL FID. The FID parsing functions must dump
these bytes until it encounters a non-zeroed byte, in which
case, the function begins parsing the next field.

Data Size

All variable data size FIDs in the standard, developer, and
extended developer groups have an accompanying data size
descriptor. The data size descriptor represents the data’s size
by using two formats that represent the data’s size in bytes.
A third format shows the data’s size in bits and contains the
data itself. The following paragraphs describe these size
formats.

Size Format 1. The first format represents data sizes from 1
through 127 bytes. This format uses one byte with the
seventh bit set to zero. The lower seven bits represent data
sizes from 1 through 127 bytes. The format is shown below:

Format 1: Onnnnnnn
Size Format 2. The second format shows how many size
bytes follow the FID. This format sets the two highest bits to
1 and 0. The lower two bits (nn) represent the number of size

bytes that follow (shown below):

Format 2: 10xxxxnn

Value of nn Number of Following Size Bytes
00 1
01 2
10 4
11 8

Therefore, a variable data size field containing a large amount
of data could be represented as:

<FID> 0x82 0xC0000000 <3,145 MB of data>
where FID identifies the FID as variable data size, 0x82 is a

format two data size descriptor that has 4 data size bytes
following it, and 0xC0000000 is the data’s size.

1-28

Rev 1.3

Introduction

Size Format 3. The third format represents bit data; it does
not show the data’s size. The seventh and sixth bits are set to
11, while the lower six bits contain bit data values from 0 to
0x3F. This format is shown below:

Format 3: 11bbbbbb

Size Summary. The following table shows a summary of the
three data size formats:

Size of Data Data Size
Format 1
0 - 127 bytes 0x00 - Ox7F
Format 2
1 additional byte
128 - 255 bytes 0x8080 - 0x80FF
2 additional bytes
256 - 65,535 bytes 0x810100 - 0x81FFFF*®
4 additional bytes
65,536 - 4,294,967,295 bytes 0x8200010000 - 0x82FFFFFFFF*?
8 additional bytes
4,294,967,296 - 0x830000000100000000 -
18,4x10% bytes 0x83FFFFFFFFFFFFFFFF*
Bit data (Format 3)
1 - 6 bits 11bbbbbb
Byte Order

The FID and data size are a byte stream; however, the data is
in little endian order (low-high byte order). To decipher the
FID and data size, parse the first byte, then the second, and
so on until the data’s size is retrieved.

Field Example

This is a very simple example of how to design and parse a
field. Appendix B, "SIDF Example" gives an in-depth parsing
example.

8 Intel low-high byte order

Rev 1.3 1-29

System Independent Data Format

Error Recovery

Designing the Field. To design a field containing a
software’s version do the following:

1.

Consider all instances of the field. Since the version can
contain numerical and character values, we design the
data portion of the field to contain a string of characters.
Also, we want to allow for future possibilities, so we select
a variable size FID to contain a null-terminated string.

If the FID already existed, we would create the following
entry into a section:

<00001111> - 00000110 - VER 1

where <00001111> is the FID’s unique bit pattern (a small
variable FID) that shows this is a software version field,
00000110 is the data’s size (6 bytes), and "VER 1" is the
data.

Parsing the Field. To parse this field:

3.

We take the first byte and analyze its bit pattern (start at
the seventh bit). The high bit tells us that we have a
small standard FID, so we know that the sixth bit tells us
if this is a variable or fixed size FID. Since it is 0, we
know that it is a variable FID.

Next, because this is a small standard FID, we know that
the lower six bits tell us what kind of data this field
contains. We see that it is a software version field.

Next, because this is a variable field, we grab the next
byte to see what kind of size type this field has. Again, we
start with the seventh bit. Because it is 0, we know the
size descriptor uses size format one (1) to suggest the
data’s size.

Because of this, we grab the lower seven bits to get the
data’s size. This size information tells us that there are
six bytes of data.

Hard and Soft Aborts

Hard aborts are caused by hardware failure, power failure,
etc. and can be identified by the missing or incomplete session
trailer, session or media index, expected data is missing, etc.

1-30

Rev 1.3

Introduction

Resynchronization

Direct Seeking

SIDF provides a resynchronization field for times when an
engine becomes lost while parsing formatted data. The first
field in every section not only identifies the section, but also
contains resynchronization data "0xA55A." If the engine
becomes lost, it should look for this bit pattern and do the
following steps after finding it:

1. Check the FID value that the resynchronization pattern
belongs to, to see if the engine is where it should be (if
possible).

2. Begin parsing the next few fields after the resynchronizing
field.

If you are successful in parsing the next three or four fields, it
is highly probable that your parsing mechanism has
resynchronized with the data.

Direct seeking to a data set is possible under SIDF by
recording the data set’s name and media location to a log file
during a backup session.

Information for the log can be obtained as follows:

1. SIDF specifies that before writing a transfer buffer to the
media, its session physical sector address is recorded into
the transfer buffer header.

2. The engine writing the transfer buffer could return the
transfer buffer header to the engine requesting the write.

3. Since the engine requesting the write operation knows the
offset to each record in the transfer buffer, it could store
the transfer buffer’s address, offset of each record, and the
data set’s name (contained in the record) into the log file.

During a restore session, an engine can use this log file to
seek to the transfer buffer that contains the desired data set.
After seeking to and reading the desired transfer buffer, the
offset information is used to get the specified record.

Note: A database also can be used to provide a
sophisticated solution than a log file.

Rev 1.3

1-31

System Independent Data Format

1-32 Rev 1.3

Introduction

Rev 1.3 1-33

